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Grb2 Dominantly Associates With Dynamin II in Human
Hepatocellular Carcinoma HepG2 Cells
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Abstract The two SH3 domains and one SH2 domain containing adaptor protein Grb2 is an essential element of
the Ras signaling pathway in multiple systems. The SH2 domain of Grb2 recognizes and interacts with phosphotyrosine
residues on activated tyrosine kinases, whereas the SH3 domains bind to several proline-rich domain-containing
proteins such as Sos1. To de®ne the difference in Grb2-associated proteins in hepatocarcinoma cells, we performed
coprecipitation analysis using recombinant GST-Grb2 fusion proteins and found that several protein components (p170,
p125, p100, and p80) differently associated with GST-Grb2 proteins in human Chang liver and hepatocarcinoma
HepG2 cells. Sos1 and p80 proteins dominantly bind to Grb2 fusion proteins in Chang liver, whereas p100 remarkably
associate with Grb2 in HepG2 cells. Also GST-Grb2 SH2 proteins exclusively bound to the p46Shc, p52Shc, and p66Shc

are important adaptors of the Ras pathway in HepG2 cells. The p100 protein has been identi®ed as dynamin II. We
observed that the N-SH3 and C-SH3 domains of Grb2 fusion proteins coprecipitated with dynamin II besides Sos1. These
results suggest that dynamin II may be a functional molecule involved in Grb2-mediated signaling pathway on Ras
activation for tumor progression and differentiation of hepatocarcinoma cells. J. Cell. Biochem. 84: 150±155, 2002.
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Growth factor receptor-bound protein 2
(Grb2), a 25 kDa protein, is a ubiquitously
expressed adapter protein composed of one SH2
domain ¯anked by amino- and carboxy-term-
inal SH3 domains (N-SH3 and C-SH3, respec-
tively) [Lowenstein et al., 1992]. The Grb2 SH2
domain binds to several tyrosine-phosphory-
lated receptor-type molecules, including erbB2
[Janes et al., 1994], EGFR [Lowenstein et al.,
1992], PDGFR [Arvidsson et al., 1994], and
M-CSFR [Kharbanda et al., 1995] as well as

other phosphotyrosine containing proteins like
Shc [Rozakis-Adcock et al., 1992]. The major
function of Grb2 SH3 domains is thought to be
binding the Ras-guanine nucleotide exchange
factor Sos1 [Li et al., 1993; Warnock et al., 1995].
This Grb2/Sos complex activates Ras in
response to growth factors in many different
kinds of cells so that the activated Ras in turn
leads to activation of Raf and MAP kinase
[Joneson et al., 1996; Khosravi-Far et al.,
1996]. The recruitment of Grb2/Sos complex to
the plasma membrane is due to the phospho-
rylation of Shc proteins in Ras activation. In
addition to the signaling pathway through Ras
activation, it has been reported that Grb2 can
associate with at least ®ve different proteins
besides Sos1 in human breast cancer cells
[Sastry et al., 1997]. This report has shown a
possibility that each of these Grb2 binding
complexes may mediate in different cellular
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functions or other functions for tumor progres-
sion and differentiation.

Dynamin is a 100-kDa GTPase that mediates
in late stages of endocytosis in both neuronal
and nonneuronal cells [McClure and Robinson,
1996]. Although several past studies suggested
the neuronal restricted existence of dynamin, it
is now clear that dynamin isoforms are ex-
pressed in all tissues [Scaife and Margolis, 1990;
Chen et al., 1992]. So far, three different
isoforms of dynamin have been reported with
their tissue-speci®c expression: neuronal speci-
®c dynamin I [Cook et al., 1994; Sontag et al.,
1994]; ubiquitously expressed dynamin II [Cook
et al., 1994; Kelly, 1995]; and testis-speci®c
dynamin III [Nakata et al., 1993]. Although
there is considerable evidence that dynamin is
involved in the endocytic process at plasma
membrane, most of the studies have been done
in neuronal cells, which probably represent
dynamin I. Dynamin II is highly homologous
to dynamin I with an overall sequence identity
of 79% [Sontag et al., 1994]. Recently, dynamin
II has been reported to be localized in the trans-
Golgi network (TGN) rather than plasma
membrane [Maier et al., 1996] and participated
in the formation of distinct transport vesicle
from the TGN [Jones et al., 1998], implying that
its function is distinct form that of dynamin I.

Dynamin is known to bind to the several
signal molecules containing the SH3 domains
such as Grb2, PLCg [Seedorf et al., 1994],
subunit of PI3K (p85) [Miki et al., 1994],
amphiphysin [Grabs et al., 1997], IRS1 [Ando
et al., 1994] and Src [Foster-Barber and Bishop,
1998]. These results suggested that dynamin II
might have diverse functional roles, which link
signal transduction mechanisms to the endocy-
tic pathway. Recently, most studies on this ®eld
have previously been done in neuronal cells
with dynamin I, the interest raises the possibi-
lity that dynamin II might have more func-
tionally signi®cant roles involved in growth
factor receptor signaling. We have previously
reported that dynamin II dominantly associated
with Grb2 SH3 domain in Ras overexpressed
NIH3T3 cells [Yoon et al., 1997]. This result
suggested that dynamin II might be a functional
molecule on Ras signaling pathway.

In this study, to ®nd the difference in signals
mediated by Grb2 bound proteins between
normal and tumor cells, we investigated Grb2
associated proteins in human normal Chang
liver and hepatocarcinoma HepG2 cells by

the coprecipitation method using GST fusion
proteins. We also found that several proteins
differently associated with Grb2 between
Chang liver and HepG2 cells, and dynamin II
is a dominant protein associated with Grb2 SH3
domains in HepG2 cells. Our results suggest a
possibility that the tumor promotion and pro-
gression in human liver cancer may be closely
related with these complexes, Grb2-dynamin II.

MATERIALS AND METHODS

Cell Culture and Cell Lysis

Chang liver and HepG2 cells were main-
tained in the Dulbecco modi®ed Eagle medium
(DMEM) supplemented with 10% fetal bovine
serum, penicillin G (100 IU/ml), streptomycin
sulfate (100mg/ml), amphotericin B (0.25mg/ml),
and 2-mercaptoethanol (50 mM) at 378C in a 5%
CO2 humidi®ed incubator.

Chang liver and HepG2 cells grown to 80±
90% con¯uent in T-185 ¯ask were replenished
with fresh methionine-free DMEM medium and
were incubated for 15 min in a CO2 incubator.
After washing the cells twice with 10 ml of
labeling medium (methionine-free DMEM, 5%
fetal bovine serum), 0.25 mCi of [35S]-methio-
nine (Amersham, Arlington Heights, IL) was
added into the culture and incubated for 4 h in a
humidi®ed incubator. The labeled cells were
washed and replenished with 10 ml of ice-cold
phosphate buffered saline (PBS). The cells were
then scrapped and collected by centrifugation at
300g for 5 min at 48C. The supernatant was
removed and the cells were resuspended in lysis
buffer (10 mM Tris±HCl [pH 7.4], 0.5% Nonidet
P-40, 1% Triton X-100, 150 mM NaCl, 1 mM
EDTA, 0.2 mM sodium orthovanadate, 0.2 mM
phenylmethylsulfonyl ¯uoride, 10 mg/ml leu-
peptin, 5 mg/ml aprotinin) for 1 h on ice. The
crude cell extracts were obtained after removing
cell debris by centrifugation at 14,000g for
20 min at 48C.

In vitro Binding of GST-Grb2 Fusion Proteins

The GST fusion proteins of Grb2 (1-217 amino
acids), Grb2 SH2 domain (Grb2/SH2, 60±158
amino acids), Grb2 N-terminal SH3 domain
(Grb2/SH3(N), 1±54 amino acids), and Grb2 C-
terminal SH3 domain (Grb2/SH3(C), 163±217
amino acids) have been previously described
[Yoon et al., 1997] and were puri®ed on glu-
tathione sepharose beads (Pharmacia, USA) as
described previously [Smith and Johnson,
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1988]. Ten micrograms of each GST fusion
protein was incubated with the lysates of
HepG2 cells pulsed with [35S]-methionine for
3 h at 48C with gentle rotating. Then glu-
tathione sepharose beads were incubated with
each sample. The beads were washed with PBS
to remove unbound proteins to GST fusion
proteins and GST alone. After washing, the
bound proteins to beads were analyzed by SDS-
PAGE using 6±15% gradient gel, transferred to
polyvinylidene di¯uoride (PVDF) membrane,
and exposed to X-OMAT ®lm for 24 h at room
temperature.

Western Blotting

To identify the Grb2 associated proteins
the coprecipitation blots were blocked with 3%
bovine serum albumin in PBS for 30 min and
incubated with mouse antidynamin IgG1

(Transduction Laboratory, Lexington, KY),
rabbit anti-Sos1 IgG (Upstate Biotechnology,
Lake Placid, NY) and rabbit anti-Shc IgG
(Upstate Biotechnology) at 48C overnight.
The blots were then incubated with horse-
radish peroxidase-conjugated goat±mouse IgG
(Sigma) for 2 h at 48C. To detect the p100
protein, the blot was incubated with mouse
antidynamin IgG1 whereas we used rabbit anti-
Sos1 IgG to detect the p170 bound protein.
Immunoreactivity was determined using sub-
strate solution, PBS containing 4-chloro-1-
naphthol (0.018%, Sigma), H2O2 (0.05%), and
methanol (5%).

RESULTS AND DISCUSSION

Comparison of Grb2-Associated Proteins in
Human Normal Chang Liver and
Hepatocarcinoma HepG2 Cells

Transformed malignant cells growing in cell
culture exhibit several tumor speci®c changes
including alteration of cytoplasmic phenotypes,
growth characteristics, cell membrane struc-
ture and function, and altered cellular signal
mechanisms. To explore the transformed malig-
nant cell-derived changes, occurring around
Grb2 in signaling pathways, we carried out
coprecipitation experiments with the puri®ed
GST alone or with GST-Grb2 fusion proteins
and compared the precipitates from Chang liver
(Fig. 1A) and HepG2 cells (Fig. 1B). We observed
that Grb2 coprecipitated with four proteins
(p170, p125, p100, p80) in these cells. Interest-
ingly, p170 and p80 exclusively coprecipitated

with Grb2 in Chang liver, whereas Grb2
appears to have preferential interaction with
p100 and Grb2 SH2 dominantly bound to p66,
p52, and p46 in HepG2 cells. Protein p125 seems
to interact with Grb2 in these two cells.
Although several minor bands were shown,
p100 was the dominantly precipitated protein
in hepatocarcinoma HepG2 cells. Since we
pulsed the cells with [35S]-methionine, the
intensities of bands shown in Figure 1 represent
the amount of newly synthesized proteins. The
pattern of total proteins precipitated with GST-
Grb2, when detected by Coomassie blue stain-
ing, was not signi®cantly different from that of
[35S]-labeled proteins (data not shown). It is
already known that Grb2 interacts with focal
adhesion kinase (FAK) in v-src-transformed
cells [Schlaepfer et al., 1994] and with erbB2
and Shc in erbB2-overexpressing cancer cells
[Sastry et al., 1997]. Recently it has been
reported that Grb2 was required to stimulate
the Akt pathway to propagate mitogenic signals
in breast cancer cells [Lim et al., 2000]. There-
fore, each of these Grb2 binding proteins may
mediate in a different function in various tumor
cells and our results suggest a possibility that

Fig. 1. Coprecipitated proteins with GST-Grb2 fusion protein
in human liver and hepatocarcinoma cells. The lysates prepared
from human liver cell line, Chang liver (A) and hepatocarci-
noma, HepG2 (B) cells which were pulsed with [35S]-
methionine were incubated with 50 mg of GST, GST-Grb2 or
GST-Grb2 SH2 fusion proteins immobilized on the glutathione
sepharose beads (20 ml of 50% slurry) for 3 h at 48C. The beads
were washed with PBS to remove unbound proteins to GST or
GST fusion proteins. The proteins bound to beads were analyzed
by SDS-PAGE using 6±15% gradient gels, transferred to PVDF
membrane, and exposed to X-OMAT ®lm. Grb2 associated
proteins (p170, p125, p100, and p80) are shown by arrows in
Chang liver and HepG2 cells. P170, the coprecipitated protein
with GST-Grb2 in Chang liver cells was dominantly shown (A).
On the other hand, p100 was mainly associated with Grb2
fusion protein and p66, p52, and p46 were exclusively bound to
Grb2 SH2 fusion proteins in HepG2 cells (B).
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Grb2±p100 complex has other cellular func-
tions in HepG2 cells.

Identi®cation of the p100 Protein
as Dynamin II

In general, dynamin II is expressed ubiqui-
tously in the entire tissue and [Cook et al., 1994;
Sontag et al., 1994] its association with Grb2
has been observed in human monocytes when
stimulated with macrophage-colony stimulat-
ing factor [Kharbanda et al., 1995] and insulin
[Ando et al., 1994]. We also previously reported
that dynamin II dominantly associated with
Grb2 in Ras overexpressed NIH3T3 cells. And
then to de®ne whether p100 is dynamin II, we
carried out Western blot by using antidynamin
antibody and found that the p100 is dynamin II
(Fig. 2A).

As shown in Figure 3B probing with anti-Sos1
antibodies, 170-kDa protein was identi®ed as
Sos1 by Western blot analysis in HepG2. It is
known that Sos1 interacts with Grb2 via SH3
domains in Ras activating signal pathway
[Joneson et al., 1996; Khosravi-Far et al.,
1996]. 66, 52, and 46-kDa proteins associated
with Grb2 SH2 fusion protein was identi®ed as
Shc (Fig. 3C). It has been published that the
phosphorylated Shc proteins associated with
the Grb2 adaptor protein [Clark et al., 1992]
through direct binding of the Grb2 SH2 domain
to the major Shc tyrosine phosphorylation site
[Rozakis-Adcock et al., 1992]. And then phos-
phorylated Shc proteins recruited the mem-
brane localization of Grb2/Sos complex for Ras
activation [Aronheim et al., 1994]. Therefore
our results have shown that Shc proteins were
constitutively phosphorylated in HepG2 cells as
compared with normal liver cells. Pelicci et al.

[1995] has published that Shc proteins
were constitutively phosphorylated in several
human tumor cell lines containing hepatocarci-
noma, Hep3B cell line.

Our results clearly represented that Sos1 is
coprecipitated with Grb2 in both cells; however,
Grb2 proteins remarkably interact with Sos1 in
Chang liver rather than in HepG2. Otherwise
dynamin II interacts with Grb2 in both cells, but
the dynamin II in HepG2 is strongly bound to
Grb2. For these results, several explanations
would be possible. First, transformation by
malignancy tumor might bring a structural
change in dynamin II, which become more
favorable to bind Grb2 and, second, the expres-
sion of dynamin II may be upregulated on
malignancy tumor induced by Ras activation
causing cancer.

The identity of the 125- and 80 kDa proteins is
currently not determined yet, but similar sizes
of proteins were found to complexes with Grb2
in previous data [Sastry et al., 1997].

Dynamin II Associated With Grb2 via SH3
Domains in HepG2 Cells

To determine which domain of Grb2 protein is
critical for interaction with dynamin II, we
performed coprecipitations with GST-fusion
proteins of Grb2/SH2, Grb2/SH3 (N), and
Grb2/SH3 (C). As shown in Figure 3, dynamin
II coprecipitated with Grb2/SH3 (N) or Grb2/
SH3(C) domain as well as Grb2, but not
with Grb2/SH2 domain. Five putative SH3
domain-binding sites have been suggested at
the C-terminus of dynamin by the sequence
comparison with the SH3 binding sites found in

Fig. 2. Identi®cation of coprecipitated proteins with GST-Grb2
fusion proteins. To identify the coprecipitated (CP) proteins with
Grb2 fusion proteins, the membranes for this analysis by
Western blotting (WB) were incubated with mouse anti-
dynamin IgG (A), rabbit anti-Sos1 IgG (B), and rabbit anti-Shc
IgG (C), respectively as described in Materials and Methods.
Arrows indicates the position of dynamin II, Sos1 and Shc.

Fig. 3. The SH3 domain-mediated association of Grb2 to
dynamin II. [35S]-methionine labeled lysates of HepG2 cells
were incubated with GST, GST-Grb2, GST-Grb2/SH2, GST-
Grb2/SH3(N), or GST-Grb2/SH3(C) immobilized on glutathione
sepharose beads as described in Materials and Methods. The
bound proteins were separated on 6±15% gradient SDS-PAGE,
transferred to PVDF membrane, and exposed to X-ray ®lm.
Arrows indicate the position of dynamin II.
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Sos1 [Gout et al., 1993]. Besides, it has been
reported that dynamin I bound to several other
proteins including PLCg [Gout et al., 1993], p85
[Tuma et al., 1993], amphiphysin [Seedorf et al.,
1994] and Src [Seedorf et al., 1994] in vitro, and
these interactions are all mediated by a proline-
rich region at the dynamin C-terminus that
contains SH3 domain binding motifs. The
precise role of Grb2 binding to dynamin II is
presently unclear. Recently, several research
groups have shown that the recruitment of
Grb2-Sos1 to the membrane, triggered by
epithelial growth factor (EGF) stimulation,
activates the Ras-dependent signaling and
simultaneously enhances free dynamin levels,
leading to both receptor internalization and
endocytotic process [Vidal et al., 1998]. These
results proposed that dynamin function on
endocytosis might link larger numbers of signal
molecules to cellular signaling. Recently, it was
proposed that dynamin II participated in the
formation of distinct transport vesicle from
trans-Golgi network (TGN) rather than from
plasma membrane [Maier et al., 1996; Jones
et al., 1998]. Generally, dynamin is involved in
intracellular vesicle formation including endo-
cytosis, synaptic transmission, and receptor
internalization, the Grb2-dynamin complex
can construct an intermediate messenger in
signal pathway leading to vesicle formation.
The C-terminal region of dynamin, which is
considered as the binding site of Grb2, has also
been elucidated to associate with microtubules
[Shpetner and Vallee, 1992; Herskovits et al.,
1993]. These data suggest a possibility that the
signals triggered by ligand binding to its re-
ceptor is mediated through the Grb2-dynamin
association. In addition, another report that
stimulation of human monocytes with macro-
phage colony-stimulating factor induces a
Grb2-mediated association of FAK and dyna-
min suggests that dynamin may be one of the
early participants in the signaling triggered by
exogenous stimulations [Kharbanda et al.,
1995]. Therefore, our results add further evi-
dence to suggest the importance of the as-
sociation of Grb2 with dynamin II or Sos1 in
carcinoma cells.
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